Tungsten Cluster Master Class

Intermediate: Backup & Recovery

Matthew Lang, Customer Success Director, Americas

Topics

In this short course, we will discuss:

- How to develop a backup plan
- Methods and tools for taking a backup
- Verifying the back contains the last binary position, and the importance of this.
- Restore backups into the cluster
- Provision a replica from an existing Datasource

Backup Plan

Backup Plan – Considerations

- How much data can you realistically afford to lose in a disaster?
 - Business decision that will have an impact on backups
 - The less you can lose, the more complex the backup plan
 - RPO Recovery Point Objective
- How long can you realistically be offline in a disaster?
 - Restoring a backup takes time
 - Less time offline adds complexity to the plan
 - RTO Recovery Time Objective
- Where will you keep your backups?
 - Requires provisioning of space
 - Must be durable
 - Must factor in backup retention time

Backup Plan – Best practices

- "We don't take backups, we use replication instead" "
- Backups should not be considered viable until they have been restored
 - Backups need to be tested
 - Backup process can also test restore
- Restore process for production needs to be documented
 - Avoid panic during a disaster
 - Test regularly

Do NOT Do This!

Backup Plan – Best practices

- 3-2-1 rule:
 - 3 copies total copies of your data
 - 2 local copies
 - Good: Separate disk
 - Better: Separate servers
 - Even Better: Separate LANs
 - Yes, this applies for cloud too.
 - For cloud, 2nd copy in another account
 - 1 offsite copy
 - Cloud if using on site production
 - On site or another cloud if using cloud
 - Protects again unauthorized access

Backup Tools

- mysqldump
 - Installed with all MySQL deployments
 - Easy to make backup, easy to restore
 - Quick for small datasets
 - Slow for large datasets, especially restore
 - Locks tables
 - Adds load to MySQL server
- xtrabackup
 - Free
 - Online, does not lock tables
 - Can load server, however does not put load on MySQL itself
 - Ideal for larger datasets
 - A lot of options, though confusing

Backup tools 2

- Snapshots (lvm, cloud, via hypervisor, etc)
 - Ideal for very large datasets
 - Extremely quick
 - Requires working at the OS or hardware level
 - Need to backup the snapshot extra step
 - Having several snapshots will impact disk performance
- File copy (rsync and others)
 - Fast
 - Works with large datasets
 - Familiar tools
 - Requires scripting to automate
 - Must stop MySQL server to get a viable backup

Taking and Restoring Backups

Within a Cluster

[LOGICAL:EXPERT] /alpha > datasource host3 backup Using the 'mysqldump' backup agent. Replicator 'host3' starting backup Backup of dataSource 'host3' succeeded; uri=storage://file-system/store-000000001.properties

- Select a secondary when using this to keep load off of the primary
- Backups by default will be saved into /opt/continuent/backups
- Backup command will use xtrabackup if available, otherwise it will use mysqldump
- A properties file is also created, which includes backup method and checksum

Automate backups within the cluster

- Use the cluster_backup command within cron on all database nodes
- cluster_backup will ONLY run on the coordinator; it will gracefully exit on other hosts
- The coordinator will select a secondary to backup
- Exactly like running datasource host backup in cctrl

shell> crontab -l 00 00 * * * /opt/continuent/tungsten/cluster-home/bin/cluster_backup >>/opt/continuent/service_logs/cluster_backup.log 2>&1

Restoring a backup within a Tungsten Cluster

[LOGICAL] /alpha > datasource host3 shun [LOGICAL] /alpha > replicator host3 offline [LOGICAL] /alpha > datasource host3 restore

- This restore process will restore the latest available backup
- Only searches for backups on the host specified, does NOT search all nodes for the latest backup

```
[LOGICAL] /alpha > datasource host3 shun
[LOGICAL] /alpha > replicator host3 offline
[LOGICAL] /alpha > datasource host3 restore storage://file-
system/store-000000004.properties
```

• Specifying a properties files allows you to select a particular backup to restore

External backups

- Use your favorite method to take a backup
- When backing up a primary, you MUST record the binlog position of the backup
 - Binary log position may be different than the values in trep_commit_seqno
 - For mysqldump, include --master-data=2, which will include a line in the dump: CHANGE MASTER TO MASTER_LOG_FILE='mysql-bin.000002', MASTER_LOG_POS=622;
 - xtrabackup always records the position in xtrabackup_binlog_info
 - For file copy or snapshot backups on a primary:
 - quiesce the database, then
 - run SHOW MASTER STATUS; in MySQL to obtain the binary log position
 - Execute backup
 - Record the binary log position with the backup

Restoring an external backup

- SHUN the node if it's not already Shunned or Failed (datasource host shun)
- Take the replicator offline (trepctl -all-services offline)
- MUST remove ALL THL: thl -service service-name purge
- Stop the MySQL server
- Perform the restore (load a previous dump, xtrabackup copy-back, file copy, etc)
- If backup was taken from a primary, we must perform some additional steps (on following pages)
- Verify ownership and permissions of database files
- Start MySQL
- Finally, RECOVER the node

Restoring from a primary

The Tungsten tracking schema

- Tungsten creates a "tracking" schema in the MySQL database
- GTID and binlog positions are stored within this schema
- When a database is restored, Tungsten uses the data in the tracking schema to set the replicator position

<pre>mysql> select * from tungsten_east.trep_commit_seqno; +++++++</pre>					
++ task_id seqno applied_latency u	fragno last_frag source_id update_timestamp shard_id	++ epoch_number eventid extract_timestamp			
++	++	++ 0 mysql-bin.000002:00000000048972;32826			

Setting the correct position

- When backing up a busy primary, the actual binary log position may be different than the values in the trep_commit_seqno table
- Compare the binary log values in trep_commit_seqno with the values obtained from the backup (mysqldump master-data or xtrabckup_binlog_info)
- If the values are the same, no further action is needed
- If the values differ, note the sequence number in trep_commit_seqno table
- Find the binlog position in the THL, using the sequence number from the above step as a starting point
- Note this new sequence number obtained from the THL, and use dsctl on the slave node to set the replicator position with this new sequence number

Setting the correct position (example)

mysql> sele	ct seqno,epo	ch, source_id,	<pre>, event_id from tungsten_east.trep_commt_seqno;</pre>
seqno	epoch	source_id	eventid
32033674	32032892	host1	mysql-bin.000032:000000473860407;-1

Examine binary log position in backup. In our example, the position is mysql-bin.000032:473863524.

Now on the primary:

Shell> thl list -service alpha -low 32033674 -headers | grep 473863524 32033678 32030709 0 true 2014-10-17 16:58:11.0 mysql-bin.000032:000000473863524;-1 db1-east.continuent.com

On the secondary, use Info from above:

Shell> dsctl set -service alpha -epoch 32030709 -source-id host1 -seqno 32033678 -event-id "mysqlbin.000032:0000000473863524;-1" -reset

tungsten_provision_slave

tungsten_provision_slave

- tungsten_provision_slave allows you to easily provision a node from a remote host
- Is run on the secondary to be provisioned
- Runs the backup on the remote hosts specified by the source option
- Copies the backup to the local server and restores it
- Will recover replication services and have the newly provisioned node (re)join the cluster
- Defaults to mysqldump, but can use xtrabackup
- Will perform all steps previously discussed when provision from a primary node

shell@host3> tungsten_provision_slave --source host2

- When run on host3, will provision from host host2
- Best to run in a screen session!

Demo: tungsten_provision_slave

Summary

What we have learnt today

- Factors to consider for your backup plan
 - RPO
 - RTO
 - 3-2-1 rule
 - Testing
- Review of backup tools
- Backup and restore within the cluster
- External backups and restore
- Special considerations when restoring a backup taken from a Primary
- Easy provisioning with tungsten_provision_slave

Next Steps

In the next session we will

- Review Multi Cluster Topologies
- Understand Multi Cluster Architecture
- Explore Configuration Differences

THANK YOU FOR LISTENING

continuent.com

Matthew Lang, Customer Success Director, Americas

